Toward the Creation of a Novel Electric Bike Rental Program to
Ease University Congestion

Jacob Barnes
The University of Mississippi
Oxford, Mississippi, USA
jbarnes2@go.olemiss.edu

ABSTRACT

At many large universities, parking and moving about campus
can be difficult, in part due to high student foot traffic and large
distances between parking lots and university buildings. While the
universities often encourage alternative means of commuting on
campus (bikes, skateboards, etc.), these often see limited adoption
and, in some highly-trafficked areas, pose a safety risk. To combat
these issues, we have begun creating a new, in house electric bike
rental program, dubbed SharkCycles, with the goal of providing
students with the ability to move around campus safely and quickly.
However, there needs a way to manage the bikes to limit pedestrian
collisions, keep track of the bikes on campus, and examine traffic
patterns of students utilizing the bikes. In this paper, we will discuss
a new system to manage electric bikes using geofencing that can be
configured for and orchestrated to each bike. This method ensures
reliability and safety by storing and processing location data with
onboard embedded computers instead of external servers while still
allowing for quick response to policy changes.

CCS CONCEPTS

« Computer systems organization — Embedded and cyber-
physical systems; « Hardware — Communication hardware, in-
terfaces and storage.

KEYWORDS
Geofencing, Internet of Things, GPS Tracking

ACM Reference Format:

Jacob Barnes, Barry Muldrey, and Charles Walter. 2022. Toward the Creation
of a Novel Electric Bike Rental Program to Ease University Congestion. In
2022 ACM Southeast Conference (ACMSE 2022), April 18-20, 2022, Virtual
Event, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3476883.3520210

1 INTRODUCTION

Location services have become ubiquitous across computers and
mobile devices today. Cell phones, specifically, have the ability
to use the data from onboard GPS receivers for many purposes,
including GPS-based directions through apps like Google Maps and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACMSE 2022, April 18-20, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-8697-5/22/04...$15.00
https://doi.org/10.1145/3476883.3520210

Barry Muldrey
The University of Mississippi
Oxford, Mississippi, USA
muldrey@olemiss.edu

Charles Walter
The University of Mississippi
Oxford, Mississippi, USA
cwwalter@olemiss.edu

Waze. Most of these services work by sending data from the cell
phone to an external service for processing. In this scenario, the
phone acts primarily as a sensor by finding a location, sending that
to other systems for processing, and then waiting for a response
to tell it what to do based on its location [4]. While this process
works well for apps focused on providing directions to users, issues
arise when the user needs real-time responses to GPS location
information.

Self-driving cars from companies like Google’s Waymo [7] have
faced similar issues. The cars must be able to react quickly to chang-
ing road conditions so that they can follow the road and avoid
collisions. Today, these issues are solved by computing the data on
high-performance computers that are on-board the vehicles [11].
This allows them to react in real time to pedestrians and changes
in road conditions.

Recently, new developments have been made in the use of GPS
data for virtual fence systems using the location data from a mobile
device [12]. This concept has been termed Geofencing. Most of these
systems, however, rely on external servers to process the location
data and then receive a response with commands to execute. This
solution shares many of the disadvantages of direction apps, namely
the lack of real-time response and reliance on a consistent internet
connection.

In an effort to solve the congestion and parking issues on large
college campuses, our University Department of Parking and Trans-
portation (UDPT) is in the process of creating a program to allow
students, faculty, and staff to rent electric bicycles. Electric bikes
have two primary advantages. The first is that they assist the rider
so that they do not have to work as hard to pedal the bike. This is
particularly useful for steep hills that must be regularly traversed by
students. However, students can ride much faster on an e-bike than
on a regular bike, making them potentially unsafe for pedestrians
nearby if ridden on a busy walkway or sidewalk. This leads to an
important question: "How are we going to keep students safe both
on and off these bikes?"

In this paper, we discuss the initial development of a system to
allow the monitoring and control of rental electric bikes. Thanks
to the ever-decreasing cost, size, and power consumption of mobile
CPUs, computer engineers can now create small portable devices
with enough processing power to compute their location on their
own. Using that data, the devices can execute certain actions based
off that location data.

We utilize Geofencing as a means of ensuring safety for both
riders and pedestrians on campus. Using Geofencing, the bicycle’s
onboard computer can detect if it is inside predefined areas on
campus, and then dynamically adjust certain settings, such as max-
imum speed and pedal assist. We also use this technology to detect

other scenarios, like if a bike has left campus, and alert department
administrators or automatically immobilize the bike until it can be
retrieved.

This also provides us a way to record the location data from
a user’s ride and provide analytics to them, showing information
such as the distance, average speed, and path taken. Furthermore,
the recorded data would be useful if a bike is ever vandalized or
damaged. In such an event, the data could easily be provided to law
enforcement to help find the persons responsible.

2 RELATED WORK

Our university is not the first organization to create an electric bike
rental program. However, while others have built similar systems,
almost all of them track the bike and combat theft or other mali-
cious activity through some kind of out-of-band means. Usually
this is accomplished by using the renter’s cell phone [8]. Other
systems have different requirements to keep users from stealing
the bikes. CitiBike infamously makes their bikes overly heavy and
once required that the bikes be checked in to a station every 30
minutes to ensure that they were not stolen. If a rider missed this
deadline, fines would be charged to the renter. This has recently
been changed and you can now use the bike for up to 48 hours
before it is deemed "lost" [2].

In addition to rentable bicycles, rentable e-scooters have made
their way onto the market. These systems use onboard GPS devices,
but send their data to servers in the cloud for processing [9]. Systems
like this are cheaper and much more widely available, but have their
own issues. These GPS trackers are prone to failure if the servers
were ever to go down, making the e-scooters unable to be ridden
since the security features are also tied in with the online services.
They can also be easily bypassed, as numerous news articles have
shown, leading to mass theft and vandalism [5][6]. Furthermore,
these e-scooters lack the more advanced safety features of our
system, which can detect issues without having to report back to
the central control system.

Aside from rentable vehicles, almost all geofencing arrangements
(and most applications of GPS technology in general) use off-device
processing. Even when not using GPS for localization, processing
is almost always performed remotely. Wang et al. [13] utilized
accelerometer and magnetometer data collected using a mobile
app on a smartphone for indoor localization. This data was then
sent via a network connection to a realtime database. A separate
server was set up that monitored the database for changes and once
found, ran calculations to compute the movement of the device.
This movement data was written back to the database so that the
smartphone app can read the new location. This would work well
in an area that always has good network connectivity but when
the GPS receivers are used in the real world, this is not always the
case.

Our solution aims to solve many of the issues with these systems.
By processing all the location data on the device, we eliminate
the need for backend servers that could cause reliability issues.
All geofencing processing happens on the device so even if the
communication channels fail, or if our servers stop responding, the
bikes can still protect users by checking their location against the
local configuration data. Servers are still necessary in our use case

because they are used to orchestrate settings to all of the bikes and
record information to be displayed on the web portal.

This management system, where configurations are orchestrated
to each bike and stored locally on internal storage, was inspired
by Dell’s Wyse Thin Client products [10]. Dell created a piece of
management software called the Wyse Management Suite (WMS)
that has the ability to orchestrate settings to up to one million
devices [3]. This software has a web portal where settings can
be configured, along with a backend server that the thin clients
communicate with to receive their configuration data.

When the Wyse thin client devices start up, they connect to the
WMS server and check for any changes in their configuration. If
no changes are found, they continue with their boot-up process,
but if changes are found, they request the full configuration from
the server and save it to the device’s local storage. For the thin
clients, these configurations could include hundreds of settings
including server connections, desktop backgrounds, networking
configurations, and much more. This management scheme allows
the thin clients to function as normal if the server is offline due to
the fact that the configuration is stored on the local device. The
WMS system is very similar to how the SharkCycles bikes receive
their settings, checking in and then downloading the configuration
only when there are changes available.

3 PREVIOUS EFFORTS

Our electric bike rental system, SharkCycles, originally began as
an Electrical and Computer Engineering master’s project, where
several graduate students worked together to create a prototype
bicycle (Figure 1). This prototype was built from off-the-shelf parts,
purchased from an electric bike vendor - including a battery, motor,
and other control circuitry. In addition to the kit, the students built
their own hardware that made use of a Raspberry Pi and an onboard
LTE cell modem. This prototype hardware had some basic reporting
functionality, connecting to a server that was hosted by campus IT.
Every three to five seconds, the Raspberry Pi would send a message
to the server to report the current location and battery level. Based
on Barbeau et al. [1], we can expect battery life of around 50,000
seconds with this rate, which should ensure power throughout a
normal day of operations. It also had the ability to report other
information about the state of the bike, such as if it was currently
being ridden or if there were errors.

Our University’s Department of Parking and Transportation
liked the prototype but had one major problem: they needed to be
able to keep riders from hurting others by riding the bikes quickly
through busy areas on campus. In addition, the department also
wanted to prevent riders from stealing the bikes or participating in
other malicious activities with them. To mitigate these issues, we
began work on a system to track and control the bikes remotely.
This system needed to be able to dynamically change the bike’s
configuration based off location data from the bike by checking
whether it was inside a geofence set up by the administration.

4 GEOFENCING FOR ELECTRIC BIKES

Our bike management system is split into 3 major parts: the bike
hardware, the bike server, and the web portal. The bike’s hard-
ware contains a GPS receiver and a network modem, as well as

Figure 1: Initial Prototype Bike

the components needed to provide pedal assist. The "bike server"
handles bike check-ins and configuration updates, in addition to
bridging the gap between the bikes and the web portal. Finally, the
web portal allows users and UDPT staff to interact with the system.
Both the bike server and web portal are connected via a single SQL
database. Figure 2 shows the design of the system.

Web Bike Server
Application |
Cell Network

Figure 2: System Layout Diagram

4.1 The Bike Hardware

Each bike is equipped with a custom-designed and low-powered
computer that has hardware similar to a Raspberry Pi. These devices
contain a GPS receiver to find their location and a LTE modem
to allow them to connect to the internet. Each device also has
software that communicates with the bike server using a custom
protocol, similar to HTTP, that was developed for this project. In
addition, the devices have onboard storage to hold configuration
data, which is downloaded periodically from the bike server. This
stored configuration data is used when the device checks its location
to detect if it is inside a configured geofencing scheme.

When initially designing this project, we realized there was a
need for some very small geofenced areas and that many areas on
campus may require a faster response to GPS data than is possible
when awaiting server responses. This necessitated shifting the deci-
sion making process from the server to the bike itself. As mentioned
in Section 1, this paradigm is very different from similar systems
that use external devices (ex. the user’s phone) or an onboard de-
vice, both of which report the location data to external servers
for processing. The main reasoning for this is to make the bikes

more responsive when entering or leaving a specified zone and to
prevent tampering with the location data. Even though the bikes
do all location processing using the onboard computer, some data
is still reported back to the bike server so that it can be displayed
on the web portal.

When a user starts a ride, the bike begins continually checking
its location (accurate to +5 feet) using the built-in GPS receiver. It
uses that location data to see if the bike is inside any geofencing
zones that are specified in the saved configuration. If a match is
found, the bike executes any actions that have been configured
through the web portal, giving UDPT control over various settings
(e.g. maximum speed, maximum pedal assist). While geofencing
can restrict users from riding the bike off campus to steal it, what
would happen if someone were to stick the bike in their car and
drive away? Another advantage of on-device processing is that
we can always know where the bike is at all times. Most bike
rental systems use the renter’s mobile device to record the location
of the rented bike during their ride, but this can be problematic
because users can use software on their phones to manipulate the
device’s reported location easily. In our system, a scenario like this
would have no effect because users cannot manipulate the physical
hardware on the bike to change the detected location. Furthermore,
if the hardware was tampered with, this would be easily detectable
because it would no longer be checking into the server.

4.2 The Bike Server

The bike server is mainly responsible for bridging the gap between
the bikes and the web portal. It does this by communicating with
each bike to receive status information and send configuration data.
All of this data is stored in the shared SQL database as shown in
Figure 2.

When designing the bike server, we had two main goals in mind:
reliability and simplicity. The server needed to be reliable because
we could potentially injure riders or people near them if something
went wrong, and simple because we wanted to be able to serve
large numbers of bikes without requiring large amounts of server
resources. Reliability was achieved by doing as much processing
on the bike’s onboard hardware as possible. This ensures that even
if there was a server outage or network issue, the bikes would
still operate correctly. In an attempt to simplify the server (and
clients) as much as possible, we decided to forego implementing a
full HTTP stack and instead implement a custom protocol because
it would require less resources to process requests. This also allows
us to implement our own authentication methods and message
verification processes to ensure that the messages are legitimate.

Every three to five seconds, the bike’s computer checks in to
the bike server and sends the current location, battery percentage,
and status information. There are four main steps to the check-in
process, also known as a heartbeat. Those steps are: (1) transmission
of status information to the bike server, (2) validation and storage of
the data, (3) updating of the configuration on the bike (if necessary),
and (4) executing any pending actions (like unlocking the bike).

When the bike checks in, the submitted data is validated by the
server for legitimacy and recorded in the shared database for the
web portal. This is done by checking the authorization header that is
passed as part of the request (see Figure 3) and validating the format

of the data. The server then calculates the current configuration
version and returns that, along with any pending control commands,
to the bike. After the bike computer receives the configuration
version, it checks the current cached configuration to see if it is
older than the version reported by the server. If the configuration
version from the server does not match the version stored on the
bike, the bike will request the latest configuration from the server
and the server will reply with the current configuration for the bike
to store. Finally, after any updates have completed, the bike executes
any pending commands that were sent in the initial response such
as unlocking the bike for a rider to use it.

Each message (Figure 3) starts with a header that defines the
verb (whether the client is receiving data or sending data) and the
command. The message contains request headers that can pass
information like the type of data that is being sent and the autho-
rization header to authenticate the bike. Finally, any other data
being sent to the server is included at the bottom and the message
is ended with a blank line.

POST Heartbeat/Invoke

Authorization 00000000-0000-0000-0000-000000000000
Content-Type JSON

{"latitude": 123, "long...}

Figure 3: Example Bike Message

Due to the high frequency with which these messages are be-
ing sent, the bike server was designed to be run in a distributed
configuration. Multiple instances of the bike server can be run si-
multaneously, with a network load balancer spreading the requests
across them all. This will allow us to easily scale our operations as
more bikes come online across the network.

The primary reason that the bikes continuously poll the server
is to ensure the bike will unlock promptly after a user has rented it.
The unlock command is sent via the response from the heartbeat
command. In order to keep users from waiting a long time for the
bike to unlock when it is rented, we have chosen keep the polling
rate quite short. Additional investigation is needed to determine an
optimal heartbeat timing for both battery life and user experience.

In the case of a heartbeat message (similar to that shown in
Figure 3), the data is saved in the shared database so that it can
be viewed by the web portal. If needed, the bike server can send
configuration data to the clients. Configuration data is also saved
in the shared database so that it can be read and edited by the web
portal.

4.3 The Web Portal

Each setting that is saved in the database can be managed through
the web portal’s administrator interface. While the bike server
records some data (bike location, battery percentage, etc.) during
the heartbeat process, the web portal is the "face” of the project and
is the primary way that users (of all kinds) interact with the system.
The system is designed to have two users, normal users, who pri-
marily interact with the web portal to rent bikes, and administrators,
who can set system settings and geofencing zones.

Normal users are shown a map that displays the current location
of all active and available bikes, but any bike that is currently in

use will be hidden from the normal user view. To begin a ride, a
bike can be selected from the map or by entering in a code printed
on the bike. The portal records that the bike is ready to start a ride
so that the next time that it checks in, the unlock command will
be sent. The user can ride the bike to their destination and when
they have completed their ride, they can end the ride through the
website. When the "end ride" button is clicked, the web portal sets
a flag in the database to lock the bike and calculates the user’s final
fare. After the ride is completed, the rider can view their account
data, such as the rental price, past rides, and account balance. They
also will be able to view analytics about their past rides, allowing
them to see the path they took, total distance, average speed, and
more.

The staff and administrators at UDPT use the web portal to man-
age overall system settings. Some of these settings are simple, such
as user accounts and pricing, while others are more complex, like
the configuration on each bike and the geofencing zones. Using
the app’s visual geofencing editor (Figure 4), schemes can be cre-
ated that allow an admin to define areas and then apply actions to
that area. Actions include slowing down, reducing pedal assist, or
completely stopping the bike.

For each scheme, these actions can be configured for when they
enter or leave a zone. Staff can also define a schedule for when
the schemes will be in effect, which is necessary for safe oper-
ations during high-attendance, on campus events (home sports
games, graduation, etc.). All of the configuration data is saved in
the shared database so that it can be read by the bike server when
it is requested.

The web portal has been designed with privacy and security
in mind. Log-in is through the university central authentication
system, bike server communications are encrypted with a complex
shared secret key, web requests to the portal require HTTPS, and
data is encrypted in the SQL database to limit the risk of data
leakage. Our servers are also configured to use best practices to
further ensure secure data storage. Data shown through the admin
portal is limited to bike location and if the bike is rented, with no
direct connection between bikes and current users.

4.4 Testing

At the time of writing, the project is still in active development with
multiple groups working on different aspects of the project. Until
the hardware teams finish designing and manufacturing the control
PCBs and other components, we are unable to fully test our system.
However, the teams have had some small-scale tests that were quite
promising. A demo at The University of Mississippi’s "E-Day", an
academic preview day for high-school students, was extremely
successful. The software on the original prototype bicycle was
modified to accept the new message format, and it was successfully
able to continuously send messages to the bike server. The only
mild issues seen were with the network connection, due to the
prototype hardware only supporting WiFi at that time.

Request capacity for the bike server is something that the soft-
ware teams have been keeping an eye on during the design, testing,
and implementation phases. During our recent test, we did not see
CPU and RAM loads become an issue, with a lot of capacity remain-
ing to process other requests. Should either the capacity for the
server become overloaded, or the batteries on the bike lose charge

e 8 B

Figure 4: Visual Geofencing Editor

quickly, the interval for server communication could be increased,
as recommended in [1].

5 CONCLUSION

Today’s college campuses can be difficult for students, faculty, and
staff to navigate due to the large distances between buildings on
campus and parking structures for those buildings. Campuses can
also be crowded, leading to heavily-used sidewalks and paths with
students and faculty hurrying to their next classes. To alleviate
some of these issues, a new electric bike rental program called
"SharkCycles" is in development at our university. These bikes will
be rentable through a website, accessible from the internet, so that
students can use them to get to class and other locations on campus
more quickly.

In the planning of the project, the Department of Parking and
Transportation of our university was concerned about accidents
happening between bike riders and pedestrians. They wanted a
system to be able to manage the bikes, in addition to being able to
define areas on campus where the bikes were speed-restricted to
prevent collisions with pedestrians. We have developed a system
using geofencing technology that allows department administra-
tors to configure restricted areas on campus through a web-based
interface. This data is sent, and saved to, low-powered computers
that control each bike. These computers can detect, in real time, if
the bikes are inside of one of these restricted zones and apply speed
policies accordingly.

Some other bike rental systems (such as CitiBike [2]) use the
renter’s cell phone (or other similar means) to track the bike as
it is being ridden. In our use case, using an external device, or
external services, for GPS processing is not feasible because our
bikes need to be able to respond quickly to changes in their location
by dynamically updating the configuration of the onboard electric
motor. To solve this problem, we have decided to do all location

processing using the built-in computer system on the bike. This
gives us much better reliability and responsiveness when moving

through different areas on our campus.

6 FUTURE WORK

In the future, we plan to run large-scale testing of the web portal
and bikes on campus to investigate how students use the bikes
and determine an optimal heartbeat timing for both battery life
and user experience. Additionally, we plan to expand the system
to allow for bikes to be placed in different groups, each with their
own configurations. This would allow us to have sets of bikes to
operate only in sections of campus where there are dormitories.
The bikes could also be configured to operate only on one of our
remote campuses, giving us the flexibility to configure areas on
those campuses also.

The data from rides could also be used for research in the future.
Due to the fact that location data from each ride is stored in the
shared SQL database, this can be extracted and used at a later date
in exercise research or research into the movement patterns of
students on campus. This is only possible with our system because
of the amount of analytics that each bike directly recods during a
ride.

Finally, showing advanced ride statistics is another feature that
can be implemented in the future. Right now, our application shows
basic stats about past rides, like the distance and time, but a more
advanced view could be created using the data. Popular workout
apps show users lots of information about their rides, which would
be useful for any renters that use the bikes for exercise.

REFERENCES

[1] SeanBarbeau, Miguel A. Labrador, Alfredo Perez, Philip Winters, Nevine Georggi,
David Aguilar, and Rafael Perez. 2008. Dynamic Management of Real-time
Location Data on GPS-enabled Mobile Phones. In 2008 The Second International
Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies.
343-348. https://doi.org/10.1109/UBICOMM.2008.83

[2] CitiBike. 2019. Citi Bike Rental Agreement. https://assets.citibikenyc.com/rental-
agreement.html#section_7

[3] Dell. 2021. Wyse Thin and Zero Clients Managing Software Suite | Dell
USA. https://www.dell.com/en-us/work/shop/wyse-endpoints-and-software/
wyse-management-suite/spd/wyse-wms

[4] Sergio Ilarri, Eduardo Mena, and Arantza Illarramendi. 2010. Location-dependent
Query Processing: Where We Are and Where We Are Heading. ACM Comput.
Surv. 42, 3, Article 12 (March 2010), 73 pages.

[5] Miles Klee. 2019. Inside the Lawless New World of Electric Scooter Hacking.
Mel Magazine (2019). https://melmagazine.com/en-us/story/inside-the-lawless-
new-world-of-electric-scooter-hacking

[6] Sasha Lekach. 2018. E-scooters Can Be Hacked. Here’s What Companies Are
Doing About It. Mashable (Dec. 2018). https://mashable.com/article/e-scooter-
hacks-bird-lime

[7] Waymo Localization. 2021. Waymo — Waymo. https://waymo.com/

[8] Motivate International, Inc. 2018. Motivate Privacy Notice. https://assets.
citibikenyc.com/privacy-policy.html

[9] NIU Electric Scooters. 2020. NQi Series: App | NIU Electric Scooter. https://www.
niu.com/en/n-series/app/

[10] Dell Support. 2021. Support for Wyse 5010 Thin Clients / D10D/D10DP/D90D7 |
Overview | Dell US. https://www.dell.com/support/home/en-us/product-support/
product/wyse-5010tc-series/overview

[11] B.V. Tiulkin and N.V. Kulabukhova. 2018. Convolutional Neural Networks for

Self-driving CARS on GPU. In CEUR Workshop Proceedings, Vol. 2267. RWTH

Aahen University, 611-614.

OPEN TEXT SA ULC. 2021. System and Method for Geofencing.

Yunshu Wang, Lee Easson, and Feng Wang. 2021. Testbed Development for a

Novel Approach Towards High Accuracy Indoor Localization with Smartphones.

In Proceedings of the 2021 ACM Southeast Conference. 79-86.

e
&

